(1) GENERAL INFO

SCHOOL	ENGINEERING				
DEPARTMENT	BIOMEDICAL ENGINEERING				
MSc PROGRAM	BIOMEDICAL ENGINEERING AND TECHNOLOGY				
STUDY LEVEL	POSTGRADUATE, MSc				
COURSE CODE	BMET209		SEMESTER	В	
COURSE TITLE	Science, Technology, Society: Biomedical Engineering, Social				
	Aspects, Ethics				
TEACHIN	IG	HOURS		ECTS	
		LECTURES	26		5
COURSE TYPE	SPECIALIZATION				
COURSE REUIREMENTS:	-				
TEACHING AND EXAMINATION	ENGLISH				
LANGUAGE:					
IS THIS COURSE OFFER TO	YES (IN ENGLISH)				
ERASMUS STUDENTS					
COURSE WEBPAGE (URL)	https://eclass.uniwa.gr/courses/323/				

(2) LEARNING OUTCOMES

Learning outcomes

Course Objectives:

The course analyses the critical ethical and bioethical dimensions related to the development of technology in the field of biomedical engineering. Students will explore the history of ethics and bioethics, general ethical principles and theories, and the legal frameworks that shape practice in this field.

Learning Outcomes:

After the end of the course students will be able to:

1. Understand the evolution of ethical values and challenges in the field of bioethics.

2. Recognize and apply the key ethical principles and theories underlying biomedical engineering.

3. Understand the normative frameworks that shape bioethical practice.

4. Analyze the role of government, scientific societies, education, and health care institutions in biomedical engineering ethics.

5. Recognize the ethical challenges posed by technological advances.

6. Understand the need for ethics in practice, scientific research, data mining and industry in biomedical engineering.

7. Understand the importance of ethics and code of ethics in the professional practice of biomedical engineers.

Achievement of Course Objectives and Learning Outcomes:

To achieve these objectives, the lectures will discuss issues related to the history of ethics, the basic principles of ethics, and legal frameworks. In the lectures, students will critically discuss further case studies and ethical dilemmas in the field of biomedical engineering.

General abilities

- Search, analysis and synthesis of data and information
- Adaptation to new situations
- Decision making

- Working in an interdisciplinary environment
- Project planning and management
- Respect for diversity and multiculturalism
- Respect for the natural environment
- Demonstrating social, professional and ethical responsibility and sensitivity to gender issues
- Exercise of criticism and self-criticism
- Promotion of free, creative, productive and deductive thinking
- Ability to manage and transform complex and unpredictable work environments requiring new strategic approaches.

(3) COURSE CONTENT

"History of Ethics and Bioethics"

-Examination of the evolution of ethical values and challenges in the field of bioethics.

"General Principles and Theories of Ethics"

-Understanding the basic principles and theories that inform ethical thinking.

"Regulatory Frameworks"

-Examination of the legal frameworks governing bioethics and ethical practice.

"Technological Evolution and Ethical Boundaries"

-Examination of how technological advances affect ethical problems and constraints.

"Ethical Practices and Applications in Engineering Science"

-Applying ethical standards to practical issues in engineering.

-Understanding the role of ethics in various fields of application

-Specific ethical challenges in clinical engineering, clinical trials, development and maintenance of biomedical technologies.

"Patents in Biomedicine and Biomedical Engineering"

-Analysis of intellectual property rights.

"Code of Ethics for Biomedical Engineers"

-Examination of the ethical rules governing professionals in biomedical engineering.

(4) TEACHING AND LEARNING METHODS - EXAMINATIONS

COURSE DELIVERY	Physical presence, face to face at the auditorium					
USE OF INFORMATION AND	The course is conducted	with a projector (for the				
COMMUNICATION TECHNOLOGIES	presentation of basic theory) and on the blackboard.					
TEACHING ORGANIZATION	Activity	Semester workload				
	Teaching / lectures	26				
	Lecture material study	30				
	Unsupervised literature					
	review and preparation of	69				
	the final project					
	Total	125				
STUNDET EVALUATION	100% written or oral exam					

(5) SUGGESTED LITERATURE

Books, scientific articles and related scientific resources:

Beauchamp TL (1997). Comparative studies: Japan and America. In Kazumasa Hoshino (ed.).
Japanese and Western bioethics, pp. 25-47. The Netherlands: Kluwer Academic Publishers.
Beauchamp TL (2003). A defense of the common morality. Kennedy Inst Ethics J 13(3):259-74.

[2] Beauchamp TL, Childress JF (2009). Principles of biomedical ethics. 6th ed. Oxford: Oxford University Press.

[4] National Society of Professional Engineers. (2007). "Ethics." Code of Ethics for Engineers. (online article). http://www.nspe.org/resources/ethics/code-ethics

[5] Biomedical Engineering Society. (2004). "Ethics" Biomedical Engineering Society Code of Ethics.[6] Brey, P. (2009). 'Biomedical Engineering Ethics.' Eds. Berg-Olsen, J., Pedersen, S., Hendricks, V., A Companion to Philosophy of Technology. Blackwell.

 [7] Jong Yong Abdiel Foo, Stephen J. Wilson Andrew P. Bradley, Winston GweeDennis Kwok-Wing Tam. (2013). Ethics for Biomedical Engineers. Springer New York Heidelberg Dordrecht London, ISBN 978-1-4614-6912-4 ISBN 978-1-4614-6913-1 (eBook)

[8] IEEE Engineering in Medicine and Biology Society (EMBS) (2011) IEEE EMBS code of ethics